ZOTHOR
TITLE
INSTITUTION
REPORT NO
pub date
NOTE

Page, Lou Willians; Page, Thornton Apollo-Soyaz Papphlet No. 4: Gravitational Field. Apollo-Soyuz. Experiments in Space.
National Aeronatics and Space Adinistration, Dashington D.C.
NASA-EP-136
Oct 77
40p.: Por related documents, see SE Q25 181-189;
Parts marginally legible due to small print; Photographs ill not reproduce clearly
AVAILABLE PROM Superintendent of Documents, J.S. Government printing
Office, Dashington, D.C. 20402 (Stock No. 033-800-0g688-8: available in sets on IY - $\$ 10.00$)

EDRS PRICE $\quad \mathrm{HF}-\$ 0.83 \mathrm{HC}-2.06$ Plus postage.
DESCRIPTORS

IDENTIRIERS

ABSTRACT

 Aerospace Rotion; College Science: *Earth Science; Higher Education; *Instrudtional materials: *Learning Activities; physical Sciences: *Science Education: Secondary Education: sucondary School science: Space Sciences; *Supplementa Textbooks National Aeṛonautics ań Space AdeinistrationThis bookiet is the fourth a series of nine that describe the Apollo-Soyuz insion and experilants. This set is designed as a curriculun supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of, ideas, examples of the scientific meth od, references to standard textbooks. and descriptions of space experiments. There are numerous diagrams, as well as questions for discussion (with answers) and a glossary of terns. The series has been re vieved by selected high school and college teachers nationwide. This' booklet discusses the Doppler. Effect, the earth's graviti anomalies, the "low-lown satellite tectinique, and the nhigh-lown satellite technique. (HA)

[^0]
Apollo-Soyuz Pamphlet No.4:

 DUCED EXACTLY AS RECEIVED FROM DUCED EXACTLY AS RECEIVED FROMTHE PERSON OR ORGANIZATION ORIGIN. THE PERSSON OR ORGANIZATION ORIGIN.
ATING IT POINTS OF VIEWIOR QPINIONS. ATING IT POINTS OF VIEWOR QPINIONS.
STATEO DO NOT NECESSARILY REPRESTATED DO NOT NECESSARILY REPRE-
SENTOFFICIAL. NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY,

Apollo-
Soyuz Experiments In
Space

This is one of a series of nine curriculum-related pamphlets for Teachers and Students of Space Science
Titles in this series of pamphlets include:

〔 1.

Apollo-Soyuz Pamphlet No.4:

Gravitational Field

Prepared by Lou Williams Page and Thornton Page From Investigators' Reports of Experimental Results, and With

Washington, D.C. 20546
October 1977

The Apollo-Soyuz Test Project (ASTP), which flew in July 1975, aroused and 1960^{\prime} 's were working together in a joint endeavor, and second, because their mutual efforts included developing a space rescue system. The ASTP also included significant scientific experiments, the results of which can be used in teaching biology, physics, and mathematics in schools and colleges.
This series of pamphlets discussing the Apollo-Soyuz mission and experimends is a set of curriculum supplements designed for teachers, supervisors, curriculum specialists, and textbook writers as well as for the general public. Neither textbooks nor courses of study, these pamphlets are intended to provide a rich source of ideas, examples of the scieptific method, pertinent references to-standard textbooks, and clear descriptions of space experiments.
r. In a sense, they may berregarded as a pioneering form of teaching aid: Seldom has there been such /a forthright effort to provide, directly to teachers; curriculum-relevant reports of current scientific research. High school teachers who reviewed the texts suggested that advanced students who are interested might be assigned to study one pamphlet and report on it to the rest of the class. After class discussion, students might be assigned (without access to the pamphlet) one or more of the "Questions for Discussion" for
) formaFor informal answers, thus stressing the application of what was previously covered in the pamphlets.

The authors of these pamphlets are Dr, Lou Williams Page, a.geologist, and Dr. Thornton Page, an astronomer. Both have taught science at several - universities and have published li books on science for schools, colleges, and the general reader, including a recent one on space science.

- Technical assistance to the Pages was provided by the Apollo-Soyuz Program Scientist, Dr. R. Thomas Giuli, and by Richard R. Baldwin, W. Wilson Lauderdale, and Susan N. Montgomery, members of the group at the NASA Lyndon B. Johnson Space Center in Houston which organized the scieftins-paticipation in the ASTP and published their reports of experimentail results.

Selected teachers from high schools and universities throughout the United States reviewed the pamphlets in draft form. They suggested changes. in wording, the addition of a glossary of terms unfamiliar -to students, and

 improvements in diagrams. A list of the teachers and of the scientific investigators who reviewed the texts for accuracy follows this Preface.
This set of Apollo-Soyuz pamphlets was initiated and coordinated by Dr Frederick ${ }^{\circ}$ B. Tuttle, Director of Educational Programs, and was supported by the NASA Apollo-Soyuz Program Office, by Leland J. Casey, Aerospace Engineer for ASTP. and by William D. Nixon, Educational Programs Officer, all of NASA Headquarters in Washington, D.C.

Appreciation is expressed to the scientific investigators and teachers who reviewfe the draft copies, to the NASA specialists who provided diagrams and photographs; and to J, K. Hölcomb, Headquarters Director of ASTP operations, and Chester M. Lee, ASTP Program Director at Headquarters, whose interest in this educational endeavor made this publication possible.

Hanold L. Adair, Oak Ridge NationalLaboratory, Oak Ridge, Tenn. Lynette Aey, Norwich Free Academy, Norwich; Conn.
J. Vernon Bailey, NASA Lyndon B. Johnson Space Center, Houston, Tex.

Stuart Bowyer, University of California at Berkeley, Berkeley, Calif.,
Bill Wesiey Brown, Califomja State University at Chico, Chico, Calif.
Ronald f. Brüno, C̀reighton Prepgraiory School, Omaha, Nebr.
T. F. Budinger, University of California at.Berkeley, Berkeley, Calif.

Robert-F. Collins, Western.Staies Chiropractic College, Portland, Oreg.
\therefore B. Sue Criswelil, Baylor College of Medicine, Houston, Tex.
T. M. Donahue, Utiversit of Michigan; Ann Arbor, Mich.

David W. Eckert, Greater Latrobe Senior High School, Latrobe, Pa
L Lyle N. Edge, Blanco High School, Blănco, Tex..
Victor B: Eighler, Wichita State Úniversity, Wichiia, Kans.
Farouk El-Baz, Smithsonjan Inştitution, Washington, D,C.
D. Jerome Fisher, Emeritus, University of Chicago, Phoenix, Ariz.
R. T. Giuli, NASA Lyndon B. Johnson Space Center, Houston, Tex.
M. D. Grossi, Smithsonian Astrophysical Observatory, Cambridge, Mass:

Wendy Hindin, North Shore Hebrew Academy, Great Neck, N.Y. Y.
Tim C. Ingoldsby; Westside High School Omaha, Nebr.
Robert H. Johns, Academy of the New Church, Bryn Athyn, Pa.
\therefore D. J. Larson, f., Grumman Aerospace, Bethpage, N.Y.
M. D. Lind, Rdckwell'International S̃cience Center, Thquisand Oaks, Çalif.
f R. N. Little, University of Texas, Austin, Tex.
\because Sarap Manly, Wade Hampton High School, Greenville, S.C.
\therefore i. .. Katherine Mays, Bay City Independent School District, Bay City;' Tex.
Jane M. Oppenheimer, Bryn Mawr College, Bryn Mawr, Pa.
T. J. Pepin, University of Wyoming, Laramie, Wyo.
H. W. Scheld, NASA Lyndron B. Johnson Space Center, Houston, Tex.

Seth Shulmañ, Naval Research Laboratory, Washington, D:C.
James W. Skehan, Boston College; Weston, Mass.
B. T: Slater, Jr., Texas Education Agency', Austin, Tex.

Robert S. Snyder, NASA George C. Marshall Space Flight Center, Huntsville, Alla. Jacqueline D. Spears,. Port Jefferson High School, Port Jefferson Station, N.Y.
Robert L. Stewart, Monticello High School, Monticello, N.Y!
Aletha Stoné, Fulmore Jynior.High School, Austin, Tex.)
G. R. Taylor, NASA LyndonB Johnson Space Center, Housion, Tex.

Jacob I. Trombka, NASA Robert H. Goddard Space Flight Center, Greenbelt, Md.
F. O. Vonbun, NASA Robert H. Goddard Space Flight Center, Greenbelt, Md.

Douglas Winkler, Wade Hampton High School, Greenville, S.C.

Contents

A: Gravity Meters 9
B. Gravity Anomalies and Earth Structure 11
'C. Questions for Discussion (Gravimeterș̀, Gravity-Anomalies) 12
Section 4 ". The "Low-Low" Satellite Technique 13
Section 5 The "High Low" Satellite Technique 17
A. The ATS- 6 Geosynchronous Satellite 17
B. The MA-128 Geodynamic, Experiment 19
C. Results of the Geodynamic Experiment 19
D. Questions for Discussion (Doppler Effect, Spin, Orbits) 22
Appendix A. Discussion Topics (Answers to Questions) 23
Appendix B Si Units and Powers of 10 25
Appendix C . C Giopssary 28
 4 years of preparation by the U.S. National Aeronautics and Space Administration (NASA) and the U.S.S.R. Academy of Sciences, the Apollo and Soyuz spacecraft were launched on July 15, 1975. Two days later at 16:09 Greenwich mean time on July 17, after Apollo maneuvered into the same qubit as Soyuz, the two spacecraft were docked. The astronauts and cosmonauts then met for the first international handshake in space, and each crew entertained the other crew (one at a time) at a meal of typical American or Russian food. These activities and the physics of reaction notors, orbits around the Earth, and weightlessness (zero-g) are described more fully in Pamphlet I, "The Spacecraft, Their Orbits, and Docking" (EP-133),

Thirty-four experiments were performed while Apollomand Soyuz were in orbit: 23 by astronauts, 6 by cosmonkuts, and 5 jointly. These experiments in spate were selected from 161 proposals from scientists in nine different countrites. They are listed by number in Pamphlet I, and groups of two or more are described in decaff in Pamphlets II through IX (EP-134 through EP-141, respectively). Each experiment was directed by a Principal Investigator, assisted by several Co-Investigators, and the detailed scientific results have been published 6y NASA in two reports: the ASTP Preliminary Science Report (NASA TM $\times-58173$) and the ASTP Summary Science Report (NASA SP-4I2): The simplified accounts given in these pamphlets have been reviewed by the Principal Investigators or one of the Co-Investigators.

As described in Pamphlet I, the orbit of a spacecraft is controlled by the Earth's gravitational field. If the Earth's gravity is "'smooth," the spacecraft moves in an elliptical orbit at a predictable velocity. However, if there are irregularities in the Earth's gravity; a spacecraft in low orbit will speed up and slow down as it passes over them. Such irregular motion has been observed for spacecraft in orbit around the Moon and has been looked for on NASA missions passing other planets.

For many years, the acceleration of gravity g was thought to be the same on all parts of the Earth's surface. Then it was discovered that g is higher than normal in some regions and lower than normal in others. These regions are called "gravity anomalies," and they are caused by the high or low density of the Earth's crust. Detecting them is useful in locating ore deposits coal, oil,
C and gas. Two of the Apollo-Soyuz experiments were designed todetect gravity anomalies from the motions of spacecraft.

Experiment MA-089; Doppler Tracking, was supervised by G. C®. Weiffenbach of the Smithsonian Astrophysiçal Observatory in Cambridge, Massachusetts: The objective was to detect gravity angmalies by measuring the changes, in the distance between two satellites (the Apollo Command Module and the Docking Module) as they passed over an anomaly and were accelerated by its higher gravitational force. Both satellites were in the same low orbit, and this technique became known as the "low-low" method.

The Principal Investigator for Experiment MA -128, Geodynamics, was F O. Vonbun of the NASA Robert H. Goddard Space Flight Center (GSFC) in , Greenbelt, Maryland. The experiment was designed to detect gravity anomalies by measuring the changes in distance between the Apollo space-craft and the ATS -6 satellite, which was in a much higher orbit: This procedure bedame known as the "high-low"' method, in, contrast to the "'low-low", method of Experiment MA-089.

2 The Doppler Effect

When an automobile blowing its hora or a train blowing its whistle passes you, there is an obvious change in the pitch of the sound that you hear. The pitch becomes higher as the vehicle appreaches and lower as it recedes. In 1842, Christian Doppler, an Austrian șcientist;pointed out that this change is to be expected when any source of periodic output such as sound waves moves toward or away from an observer. The pitch (the higher or lower tone) of sound is a measure of the frequency of sound waves, which are periodic changes in air pressure that we can hear. The Doppler effect is usually illustrated by a diagram that shows sound waves crowded together in the direction of the motion of the train whistle and spread out on the other side. Figure 2.1 gives a more precise explanation.

The train whistle gives out sound waves of frequency f, about 500 hertz (500 cycles $/ \mathrm{sec}$). These waves travel through the air at the velocity of sound v_{s}, about $320 \mathrm{~m} / \mathrm{sec}$. As the train approaches at velocity v, its distance from a listener (observer) standing near the track 15 efecreasing. Therefore, each sound wave has less distance to travel that the preceding:Wave (Fig.2.1). The \because period: T of the sound wave is $T=1 / f$, which is the time interval between waves, or about 0.002 second for the train whistle. In the interval T, the train moves a distance $v T$. The next sound wave thus arrives early by $v T / v_{s}$ seconds, and the period of serund wayes heard by the observer is $T^{\prime}=T-\left(v T / v_{s}\right)$. The frequency that he hears is $f^{\prime}=f+\left(v f / v_{s}\right)$, and the wavelength λ he measures is $\lambda^{!}=\lambda-\left(v \lambda / v_{s}\right)$.

The Doppler shift is

$$
\Delta T=T^{\prime}-T=v T / v_{s}
$$

or

$$
\Delta f=f^{\prime}-f=+v f / v_{s}
$$

or.

$$
\Delta \lambda=\lambda^{\prime}-\lambda=-v \lambda / v_{s}
$$

where $T ; f$, and i are the period, frequency, and wavelength, respectively, of the train-whistle sound as heard or meaşured on the train. As' Doppler explained the phenomenon more than a century ago, the same reasoning applies to light waves or radio waves, except that they move with a much larger speed, $3 \times 10^{4} \mathrm{~m} / \mathrm{sec}$ (the velocity of light c). Light waves from the
moving train would thus be shifted to a higher frequency ("blue-shifted" by $\Delta f \doteq+f v / c$ or $\Delta \lambda=-\lambda v / c)$ as the train approaches. The light waves. would be "red-shifted" (negative Δf, positive $\Delta \lambda$) as the train recedes. The terms "blue-shifted" and "red-shifted" are used because higher frequency waves of visible light are blue and lower frequency waves are fed, as described if Pamphlet II. The shift is yery small for normal train velocities $(60 \mathrm{~km} / \mathrm{hr}$ or $16.7 \mathrm{~m} / \mathrm{sec}$ or 37 mph), which are less than one-millionth of the velocity of light. However, most satellites, planets, stars, and other astronomical objects move much faster than trains (from $7 \mathrm{~km} / \mathrm{sec}$ to hundreds, of kilometers per

Figure 2.1 Diptance-time plot showing the Doppler shift for sound waves from an approaching train with T of 2 milliseconds. Waves recelyed by the observer have T.' of 1.95 milliseconds.
second). The small Doppler shifts of radio waves from a radar on a police car. are used by police to show when drivers are exceeding the speed limit. (The Doppler shift is doubled when the radio waves are reflected from a moving car.)

A. The Discovery of Mascons on the Moon.
 Radio techniques of measure frequency very accurately. They were used to

 discover the "mascons," which are concentrations of mass just under the Moon's surface, from the very small accelerations of Moon.orbiters that were broadcasting radio waves to receivers on Earth. The Doppler effect resuilts from the movement of the sender or the receiver, toward or away from each other. Therefore, it is the component of v along the line from the moving orbiter to the receiver on Earth that must be used in the Doppler formula $\Delta f=f v / c$. This is shown in Figure 2.4. Radio engineers at the NASA Jet Propulsion Laboratory (JPL) tracked NASA's five Lunar Orbiters and measured Δf. with high preçision. They turned the Doppler formula around and computed $v=c \Delta f f f$ with an accuracy of a few millimeters per second. Taking into account the Earth's motion and the direction of motion of the Lunar Orbiter satellite, the engineers' calculated the orbital speed of the satellite, second by second. They knew that the satellite should follow Newton's laws'.- and move with uniform speed in an ellipse (almost a circle) around the center of the Moon. However, their measurements showed that each satellite would speed up slightly, then slow down, as it passed over one of the large circular basins on the Moon. All this first happened in 1968.
The interpretation of these accelerations is shown in Figure 2.3. According to Newton's Law of Gravitation (force $F_{\mathcal{g}}=G m M / r^{2}$; see Pamphlet I); there must be extra mass (the mascon) in each lunar basin, which pulled the satellite toward the basin: As the satellite approached the basin, its orbital speed increased slightly; after it passed the bakin, it slowed down a little. The amóunt of speeding up and slowing down gave an estimate of the mass concentration M. Each mascon (there are eight presently known on the Moon) is thought to be the remains of a huge meteor that hit the Moon and formed the basin (a large crater). Each mascon causes a gravity anomay, and these were the first gravity anomalies found on an astronomical body other than the Earth. Others have since been found on Mars.
${ }^{1}$ Project Physics. Secs. 8.4 to 8.8; PSSC. Secs. 13-8 and 13-10. (Throughout this pamphlet, references are given to key topics covered in these three standard textbooks: ${ }^{*}$ Project Physics;" second edition. Holt. Rinehan and Winston. 1975; "Physical Science Study Committec': (PSSC), fourth edition. D. C. Heath. 1976; and "Investigating the Earth"" (ESCP). Houghton Miffiin Company. 1973.)

Figure 2.2. Doppler shiff from the component of velocity in the line of sight.

To measure the Doppler shift Δf accurately, both the broadcast frequency f and the frequency received on Earth f^{\prime} must be known accifrately. This is dóne by using crystal oscillators to control a radiofrequency electronic circuit at - 2000 megahertz (2×10^{9} cycles $/ \mathrm{sec}$) with a deviation of only a fraction of 1 hertz (1 cycle/sec). These crystal oscillators made it possible to measure the Doppler shifts on Apollo-Soyuz very accurately. The moving object (the

Apollo Command Module or the Docking Modeule) had a crystal-controlled radio. The frequency of radio waves received was compared to the frequency of a similar crystal. The two frequencies were almost the same; but the sum of the incoming waves and the standard crystal oscillator gave a "beat frequency" equal to the difference between the two frequencies, as shown in Figure 2.4.

Beat frequency in the sum bf two waves of different frequency.

Questions for Discussion
 (Doppler Shift)

1. The exhaust of a racing car (without a muffler) makes 10 "put-puts" per second at a speed v of $50 \mathrm{~km} / \mathrm{hr}$ (31 mph). If the car is going away from you at that speed, how many "put-puts". will you hear each second?
2. A police car is parked on a side street at a 45° angle to the oncoming traffic on a highway. Will the Doppler radar on the police car give the correct speeds of cars on the highway?
3. The lunar orbiter had an orbital speed of $1.7 \mathrm{~km} / \mathrm{sec}$. How did the Doppler shift of its 2000-megahertz radio transmitter change as it moved across the center of the Moon and rounded the edge as "seen" by a radio receiver on Earth? (Assume that there are n no mascons.)

18

4

3 Earth's Gravity Anomalies ${ }^{2}$

The acceleration of gravity at the Earth's surface is cadled g and is about $9.8 \cdot \mathrm{~m} / \mathrm{sec}^{2}$ (see-Pamphlet I). Around 1590 , Gatileo first imeasured g. About 100 , jears later, Newton used g and the acceleration of the Moon toward the Earth to derive his Law of Gravitation ${ }^{3}\left(F_{g}=G m M / r^{2}\right)$. Much
\because later, scientists found that g is not exactly the same everywhere on Earth. Evidently, there are high-density rocks like the lunar mascons in some places and low-density rocks in other places. Also, the Earth's rotation reduces g from $9,83 \mathrm{~m} / \mathrm{sec}^{2}$ near the poles to $9.78 \mathrm{~m} / \mathrm{sec}^{2}$ near the Equator. The rotation also changes the shape of the Earth, producing a bulge near the Equator where the diameter is 43 kilometers more than the diameter through the poles.

A Gravity Meters ${ }^{4}$

Early mèasurements of g. were made by timing the swing of a pendulum (Fig, 3.1). The period T of a pendulum's swing is $2 \pi \sqrt{L / g}$, where L is the length of the pendulum. So, $g=4 \pi^{2} L / T^{2}$. The period can be measured vgry. accurately by counting 10000 swings and dividing the total time by 10000 .
\qquad

If you have a stopwatch that is accurate to 0,1 second, your value of T is good to ± 0.00001 second.

An accurate pendulum is still the best instrument to measure g, and such measurements have been madeat hundreds of geophysical stations all over the world. However, a pendulum won't work on à rolling ship or in an airplane flying through bumpy air. Scientists therefore produced a " gravimeter,". which has a small mass m on a spring (Fig, 3.2). The force of gravity on m is $F_{g}=m g$. If g is slightly larger, the spring is stretched slightly farther. Gravimeters have complex ways of magnifying this extra stretch.

Some use bent quartz fibers as part of the spring, and the instrument is protected from careless handling and temperature changes that might affect the readings. Each gravimeter is calibrated against a stanḍard pendulum just before it is used. A good gravimeter can measure g with an error of less than $0.1 \mathrm{~mm} / \mathrm{sec}^{2}$.

B Gravity Anomalies and Earth \$tructure

Geologisis on foot have carried gravimeters into mountains and across plains. They haye taken them along seacoasts in adutomobiles and out into oceans in submarines. In some places, they have made surveys while flying in airplanes at constant altitude. The acceleration of gravity. g is slightly smallec at - higher altitudes because the distance from the center of the Earth is greater, The force of gravity is proportional to $1 / r^{2}$, where r is the distance from the Earth's center. Gravity readings are usually corrected to what they'would be at sea level.

Maps of g corrected to sea level show many maximums and minimums; that is, hymps and troughs in the force of gravity If the Earth were perfectly homogeneous, therg-would be no maximums and no minimums. The measured values thus tell geologists about the structure of the Earth's crust. tn general, g is higher over continents where dense rocks are near the surface and lower over deep ocean basins where the dense rocks are far below. Other smaller structures," such as iran-ore, coal, oil" and salt deposits, can be detected. Caves and underground lava flows can also be located Gravimeter surveys are usefulin prospecting for oil. They also indicate the shape of buried craters and extinct volcanoes.

Gravimeter surveys by foot, automobile, or submarine ares slow relatively accurate Measurements from airplanes, although faster, fend to be inaccurate. Measurements of g from satellites have the advantage of cigovering very large areas in a short time. A primary objective of the gravity experiments during the Apollo-Soyuz mission wàs to determine how accutate the measurements from a satellite would be. Of course, a gravimeter cannot be used in a spacecraft in orbit because everything there is weightless and g would be measured as zero. (The spring would pull the mass m to the top of

- the box in Figure 3.2 because $F_{g}=0$; see Pamphlet I.) The method used depends on the accelerations of the spacecrafi (as in the discovery of mascons on the Moon). Because Apollo-Soyuz wasin a low (222-kilometer altitude)
circular orbit, small changes in g at the Earth's surface could be detected. A higher satellite would be less sensitive to changes in g.

Questions for Discussion

(Gravimeters, Gravity Anomalies)
4. An old-fashioned pendulum clock keeps accurate time at sea level, but the owner moves it to a hotel on Pike's Peak, at an altitude of abouts 4 kilometers (14000 feet). Will it run fast or slow.
5. When an airplane goes iñto a banked turn, whal happens to the reading of a gravimeter onbeard the airplané?
6. If g is $9.8000 \mathrm{~m} / \mathrm{sec}^{2}$ on the surface in the Midwestern United States, what is it at an altitude of 12 kilometers (39000 feet)? (The radius of the Earth;s 6378 kilometers:)
7. How does the Earth's rotation reduce g near the Equator?

4 The "Low-Low" Satellite Technique

When two satellites in low orbit follow one another past a gravity anomaly, the first is speeded up before the second one is and the distance between them increases. Then the first satellite is slowed down (back to normal) before the second one is and the distance between them decreases (Fig. 4.1). The MA-089 Doppler Tracking Experiment was designed to detect these changes in distance. A crystal-controlled radio transmitter was mounted on the Docking Module (DM), and a receiver with a similar crystal ${ }^{\text {ºn }}$ was placed on the Apollo Command Module (CM). Each weighed about 7 kilograms. While the DM was attached to the CM, the radios were warmed up and tested for constant frequency. This test showed a slight change of about 3 parts in 10^{12}; that is; the broadcast frequency of 324 megahertz (324 million cycles/sec) varied by only 1 millihertz (0.001 cycle/sec).

On July 23 at 19:45 Greenwich mean time (GMT the time in Greenwich, England, used as standard time on the Apollo-Soyuz mission), the DM was unlatched from the Apollo CM. Before releasing the DM, the astronauts used the Apollo reaction-control jets to spin Apollo and the DM at about one rotation every 72 seconds. After the DM was released, the Apollo CM gradually ceased spinning and backed away from the DM. Thé purpose of the DM rotation was to stabilize it with its radio antenna toward Apollo. Although this approach worked fairly well, the. DM still had a small wobble that brought its antenna first toward and then away from Apollo: This wobble

Doppler shift of the 324-megahertz frequency showlng the DM drift after separation and the CM rocket firing.

Figure 4.1
introduced an unwanted but small periodic Doppler shift in the DM radio transmission.
The Doppler shift as Apollo backed away from the DM at $1.3 \mathrm{~m} / \mathrm{sec}$ is shown in Figure 4.1. At 20:20 GMT, the Apollo reaction jets were fired to separate the Apollo from the DM more quickly. When they reached 300 kilometers, the astronauts fired the jets in thefother direction so that Apollo stayed about the same distance behind the DM.
Although the radio receiver could measure the difference in frequency accurately, there were three lanticipated complications in maring the accelerations caused by gravity anomalies: First, the DM moved into a slightly different orbit from that of the CM. This change in orbital shape caused a petriodic increase and decrease of the separation every 93 minutes, the time for one trip around the Earth (see Fig: 4.2 and Pamphlet I): Second, atmospheric drag on the two orbiters was slightly different, which caused a gradual increase in separatiop, Finally, electrons in the Earth's upper atmosphere between the two ofgiters catised a small shift in the frequency of the radio pransmissions.
The slight difference in orbit was checked by ground observations so that corrections could be made. The atmospheric drag was estimated in advanee (it caused a smooth, long-term change in separation). After correcting for this, short-term' changes due to gravity anomălies could still be detected. Thè effect of electrons coüld be measured by using two frequencies, 162 and 324 megahertz. The electrons changed one frequency more than the other, so, both the Dopplershift and the shift due to electrons could be calculated from the two measured frequency changes.
The frequency shifts were measured over 10 -second intervals for 13.8 hours as the DM and the CM circled the Earth nine times. During these nine orbits, they passed over various parts of the Earth's surface and Should have recorded many gravity anomalies. However, unlike the tests made wien the

CM and DM were still connected, variations in the DM radio-signal strength were so large during the actual experiment that the CM receiver could not measure the Doppler shift accurately.. Because of these difficulties, the "low-low" technique detected no gravity anomalies during the ApolloSoyuz, flight but another attempt on some future mission may be successful

Nevertheless, the MA-089 Experiment was able to measure the ionization of the low-density atmosphere at a 222 -kilometer altitude. The electron density varied from 3×10^{9} electrons $/ \mathrm{m}^{3}$ on the nightside of the Earth to $5 \times 10^{1 t}$ electrons $/ \mathrm{m}^{3}$ on the dayside. More interesting were the many sudden changes in ionization, Most of these occurred as Apollo-Soyuz crossed the Equator, which indicates that the ionosphere (see Pamphlet V) is irregular in that region. Figure 4.3 is a plot of the change of frequency during

Map of revolution 127 with plot of MA -089 frequency, changes. The electron density between the Apolio.CM and the DM can be computed from the change in frequency.

A satellite at very high altitude is almost unaffected by gravity anomalies because of the $1 / r^{2}$ in Newton's Law of Gravitation. Therefore, Doppler tracking of a low satellite (accelerated by gravity anomalies) from a high satellite should make measurements of those accelerations possible. The situation is complicated because the low satellite (Apollo) moves at changing. angles to the high-low line (Fig. 5.1). When Apollowas directly under the high satellite, there was no Doppler shift because there was no component of orbital velocity' along the high-low line.

The ATS-6 Geosynchronous Satellite

The ATS-6 communications satellite was in a 24 -hour geosynchronous orbit 35900 kilometers above Lake Victoria in East Africa. At that height, 42280 kilometers from the Earth's center, it circles the Earth every 24 hours and remains over the same point on the Equator all the time (hence the name geosynchronous-"'in time with the Earth"'). The ATS-6 satellite was located in this position to broadoast telẻvision programs to India and Africa; and it was also used for communications with Apollo-Soyuz (see Pamphlet 1). It relayed Yoice, radio, and television communications on se veral circuits to the ATS receiver in Madrid, Spain NASA has several other ATS satellites planed" that will eventually relay "real-time" television" and radio transmissions to or from any part of the world. -
The STDN receiver-transmitter at Madrid (Fig. 5.1) is part of NASA's worldwide Spacecraft Tracking and Data Network.of 17 ground stations and several ships. When Apollo-Soyuz was 5° above the local horizon, each of these radio stations could relay messages to or from Apollo and Soyuz.

The Apollo spacecraft in low Earth orbit, the ATS-6 satellite in high orbit (actually more than 160 times higher than Apolld), and the ground receivers at Madrid, Spain; are shown schematicatly in Figure 5.1. The radio frequencies used between each pair are given in gigahertz (10^{9} cycles/sec). The 2.25 -gigthertz-radio-signals from Apollo-to-ATS-6 have a Doppler shift of $\Delta f=2.25 \times 10^{9} \cdot v_{j} / \sigma$ where v_{A} is the component of Apollo's orbital velocity v along the Apollo/ATS-6 line The Doppler shift (and v_{A}) was zero when Apollo passed directly uther ATS- 6 and v was perpendicular to the line from Apollo to ATS 6. The shift was a maxihum (v_{A} almost equal to v) when Apollo was near the horizon as seen from the ATS-6. These Doppler-shifted . signals were then radibed to the ATS recefver in Madrid on a 3.8-gigahertz
2- circuit with almost no Doppler shift because the position of the ATS-6 is nearly fixed in the sky:

It would also have been possible to measure the Doppler shift in the Apollog 2.3-ggahertz radio transmissions to the STDN station in Madrid

Figure 6.1 Schematic of the ATS-6/Apollo communication'links. The ATS Ranging station Is designated ATSR; the NASA Spacecrift Tracking and Data Network station is designated STDN.

$(\Delta f=2.3 \times 102 v \mathrm{j} / \mathrm{c})$, but the effect of ions in the lower atmosphere complicates such measurements (see Sec. 4). lons had little effect on the Apollo/ATS-6 link or on the ATS-6/Madrid link because these radio waves travel only short distances through the ions, and a small correction could be made for the ion effect.

The MA-128 Geodynamic Experiment

The objective of the Geodynamic Experiment was to measure gravity anomalies as small as $0.05 \mathrm{~mm} / \mathrm{sec}^{2}$ over features as small as 300 kilometers. Two areas were selected: the center of Africa, which has positive gravity anomalies, and the Indian Ocean trough, which has a negative gravity anomaly. Apollo passed over central Africa on its I15th orbit (revolution) around the Earth and over the Indian Ocean on re volutions 8; 23 , and 53 , as shown in स्ipure 5:2. Measurements were made on these orbits and on revolutions 120 and 135 : Gravity anomalies wêre measured in the three areas shownt in Figure 5.2: Because the ATS-6 satellite was almost directly overhead in Africa, the component v_{A} in Figure 5.1 was directed nearly up or down over each anomaly (as over the mascon in Fig. 2.3); and the sensitivity for measuring the strength of the anomaly was high.
The radiofrequency crystal oscillators were stable enough that velocity changes as small as $1 \mathrm{~mm} / \mathrm{sec}$ were detected: Errors in the measured values of v_{A} were about $0.5 \mathrm{~mm} / \mathrm{sec}$. Measurements were made on 108 orbits for the 40 minutes of each 93 -minute orbital period during which Apollo was within 7500 kilometers of the point in East Africa directly under the ATS-6. (During the other 53 minutes of each orbit, Apolio eithet couldn't see the ATS. 6 or saw it so near the horizon that many ions were in the line of sight.) When Apollo was rolled or turned in any way, its radio antenna was moved artificially. The time of such manieuvers was recorded at the Mission Control Center (MCC) at the NASA' Lyndon B.. Johnson Space Center (JSC) in / Houston. The MA-128 Doppler measurements at those times were no good / (the scientists didn't want to misinterpret a spacecraft rdil' as a gravity anomaly!). In general, two or more orbits over the same gravity anomaly were used to estimate its strength.

Results of the Geodynamic Experiment

Changes in v_{A} (the component of Apollo's orbital velocity toward the ATS-6) during three orbits over the Indian Ocean and the Himalaya Mountains are shown in Figure -5.3. After correction for the effects of ions and electrons between Apollo and the ATS-6, the Doppler shifts (Δv_{A}) definitely show the

Figure 5.2 Apollo spacecraft groundtracks for Experiment MÁ-128.

Indian Ocean anomaly. The Himalayan anomaly is less certain, however, because there was a high density of atmospheric ions over the Himalayàs each time Apollo passed over. If the changes in v_{A} are converted to the strength of the anomalies, the two largest anomalies correspond to changes in g of 0.6 and $1.0 \mathrm{~mm} / \mathrm{sec}^{2}$, about $10^{-4} \mathrm{~g}$. Other orbits showed $10^{-5} \mathrm{~g}$ anomalies in Asia Minor, $10^{-6}-\mathrm{g}$ anomalies in central Africa, and less well determined anomalies in the Southern Hemisphere: Some of the anomalies in Asia Minor are assaciated withcontinental drift (movement of large sections of the Earth's crust) in that area (see Pamphlet .V).

Figure 5.3
Changes in Apollo velocity toward the ATS: 6 caused by gravity anomalies in the Indian Ocean and Himalaya Mountains. Note that v_{A} changes agree wellion three orbits.

The,MA-128 Experiment also provided new data about the Earth's atmosphere. Measurements made just as Apollo disappeared from ATS-6 view below the horizon (ot as Apollo reappeared above the horizon) show the refraction (bending) of radio waves in the Earth's atmosphere, These refractions can be used to derive the temperature T and the pressure P of the atmosphere through which the radio waves passed. Using measurements taken at 1 -second intervals for 30 seconds before Apollo disappeared below

$$
\dot{y}
$$

or after it reappeared above the horizon, the scientists derived T and P for several altitudes. In one place, the values derived agree with measurements made from a balloon flight, which means that the "high-low"' satellite combination can collect certain meteorological (weather) data rapidly. Later, when satellites are posjitioned at several longitudes around the world, this technique will give measurements of T and P wherever low satêlites cross a ring about 9000 kilometers from the point under each high satellite.

D. Questions for Discussion (Doppler Effect, Spin, Orbits)

8. With crystal oscillators controlling radiofrequency to 1 millihertz in 334. megahertz, what is the smallest velocity along the line of sight that can be detected?
9. If the DM had not been stabilized by a spin, what could have happened to prevent collection of the Apollo-DM Doppler measurements?
10. If the Earth rotated once every 12 hours (instead of once every 24 hours), how high would a geosynchronous satellite have to be?
11. Figure 5.1 shows an intermediate position of Apollo relative to the ATS-6. Where would the Doppler shift be at a maximum? Where would Apollo be for zero Doppler shift?

Appendix A

Discussion Topics (Answers to Questions)

1. (Sec. 2B) The Doppler formula is $\Delta f=f v / v_{s}$. The "put-put" frequency f : is 10 put-puts $/ \mathrm{sec}$. The speed of the car v is $50 \mathrm{~km} / \mathrm{hr}$ or $13.9 \mathrm{~m} / \mathrm{sec}$. The speed of sound v_{s} is $320 \mathrm{~m} / \mathrm{sec}$. Therefore, $\Delta f=(10)(13.9 / 320)=0.434$ put-puts $/ \mathrm{sec}$, and $f^{\prime}=f-\Delta f=9.566$ put-put/sec,
2. (Sec. 2B) The Doppler radar on the police car will detect only the component of a car's velocity m its line of sight, 45°, to the highway (car's velocity v). It will thus read $v \cos 45^{\circ}$, or $0.707 v$.
3. (Sec. 2B) At the center of the Moon as seen from Earth, the orbiter is moving across our line of sight $\left(\theta=90^{\circ}\right.$ in Fig. 2.2); therefore, the Doppler shift is zero. At the edge of the Moon, the ortiter is moving directly away from us $\left(\theta=180^{\circ}\right)$ and $\nu_{c}=-y=17-\mathrm{km} / \mathrm{sec}$ recession. The Doppler shift is then is $\Delta f=-f v i c^{4}=-2 \times 10^{9}-\left(1.7 / 3 \times 10^{5}\right) \Rightarrow-1.13 \times 10^{4}$ hertž or -11.3 kilohertz (-11.3 kilocycles/sec red shift).
4. (Sec. 3C) The period of a pendulum swing $T=2 \pi \sqrt{L / g}$. At sea level, $g=9.80 \mathrm{~m} / \mathrm{sec}^{2}$; at a 4 -kilometer (14000 foot) altitude (4 kilometers farther from the Earth's center),g is smaller ($9.786 \mathrm{~m} / \mathrm{sec}^{2}$), so T would'be larger. The ratio of T on the mountain to T at sea level is $\sqrt{9.80 / 9.786}=\sqrt{1.0014}=$ 1.0007. The period is thus 0,0007 longer on the mountain, and the clock runs. slow by $(0,0007)(1440 \mathrm{~min} /$ day $)=1.0 \mathrm{~min} /$ day .
5. (Sec. 3C) The airplane in a banked tum is accelerated toward the center of its tum; and thissacceleration increases the gravimeter reading.
6. (Sec. ${ }^{3 C}$) By Newton's Law of Gravitation, $F_{g}=G M m / r^{2}=m g$. Thus, g is proportional to $1 / r^{2}$, where r is the distance from the Earth's center. At a 12 -kilometer altitude, r is 6390 , and g at that altitude is $(6378 \mathrm{~km} / 6390 \mathrm{~km})^{2}=$ 0.9962 times g at sea level; or $(0.9962)(9,8000)=9.763 \mathrm{~m} / \mathrm{sec}^{2}$.
7. (Sec. 3 C) At the Equator, a mass is moving at $v=460 \mathrm{~m} / \mathrm{sec}$ in a circle with a radius r of 6378 kilopreters as the Earth rotates once every 24 hours: Part of the gravitational force $F_{g}=G m M_{E} / r^{2}$ is used to keep m moving in this circle at acceleration $a=v^{2} / r$. Therefore, a spring balance or gravimeter records $F_{g}-m v^{2} / r=m g$ - $m a$; and g is reduced by $a=v^{2} / r$. "Centrifugal force" is the term used to describe $m \nu^{2} / r$.
8. (Sec. SD) In the Doppler formula $\Delta f=f v / c$, we need Δf larger than $\because 1$ millihertz. So $\stackrel{\rightharpoonup}{v}$ must be larger than (1 milliheriz f) c, or $\left(10^{-3 / 3.34} \times 10^{8}\right)$ $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{sec}\right)=9 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$, or $9 \times 10^{-4} \mathrm{~mm} / \mathrm{sec}$. or $0.9 \mathrm{~mm} / \mathrm{sec}$.

Appendix B
 sl Units
 Powers of 10

International System (SI) Units
Names, symbols, and conversion factors of SI units used in these pamphlets:

Appendix C

Glossary

References to sections; Appendix A (answers to guestions), and figures are included in the entries. Those in italic type are the most, helpful.
acceleration (a) change of velocity with time. (Secs. 2A, 3, 4; App, A, nos. 5, 7; Figs. 2.3, 5.3) The acceleration of gravity at the Earth's surface is called g.
ATS-6 communications satellite a satellite in geopsychronous (24-hour period) örbit-35 900 kilometers above East Africa, used to rebroadcast radio signals to and frem the control station in Madrid, Spain. (Secs. 1, $5 A, 5 B, 5 C$; App; A, no. 11 ; Figs: $5.1,5.3$)
basin a depression. Basins on the Moon are large craters caused by meteor impact. Ocean basins on Earth are deep places in the floor of the oceans. (Secs. 2A, 3B)
beat frequency when two sources are emitting sound waves of a different frequency $\left(f_{1}, f_{2}\right)$, the combined found swells and falls in intensity, producing beats. The frequency of the beats is $f_{2}-f_{1}$ (Sec. $2 \mathrm{~A} ;$ Fig. 2.4)
c the volocity of light, radiọ, and other etectromagnetic waves; 3×10^{8} $\mathrm{m} / \mathrm{sec}$. (Sec 2).
Command Module (CM) the paft of the Apollo spacecraft in which the astronauts lived and worked; attached to the Service Module (SM) until reentry jntothe Earth's atmosphere. (Sec. 4; Fig. 4.3)
component (radial) of velpecity the fraction of a, velocity vector that is along the line of sight of ait observer; it is only this fraction that produces Doppler shift. (Seecs. 2^{3}, 5 to. SC; App. A, nos. 2, 3, 11; Figg. 2.2, 5.1, 5.3):
crater ă circular depression. Most of thosé on the Moon were produced by: - meteor impăct. (Secs 2A'3B; Fig. 2.3)
crystăl a solid composed of atoms or ions or molecules arrangededn a regular repetitive pattern, In an electronic circuit, it oscitate with a fixed tre quency. (Secs. 2A, $4,5 B$; App. A, no: 8)
Docking Module (DM) a special component added to, the Apollo spacectaft So that it could be joined with Soyuz (Secs. $1,4 \%$ App. A,mo. 9 Figs, 4. 1 , 4.3) See Pamphlet I.

Doppter shift the change offrequency and wavelength in the spectrum of a soutce approaching an observer (blue shift) onreceding from him (red shift). (Secs. 2, 2A, 4, 5 to 5C, App. A, nos. 10 3, 8, 1t, Figs 2.1; 2.2. 4.1 4.4 .2)
drag, atmospheric the frictional forces opposing spacecraft velocity, eaused eyen at highaltitudes by the low-density Earth atmosphere there Atmos' pheric drag lowers the orbit. (Sec: 4)
frequency (A)the number of oscillations or waves leaving a sound source or a radio anténna or a light source per secont (Secs $2,2 \mathrm{~A}, 4,5 \mathrm{~A}, 5 \mathrm{~B}$; Figs $\left.{ }^{2} 4,4.3\right)$,

g acceleration of gravity at the Earth's surface, $9.8 \mathrm{~m} / \mathrm{sec}^{2} \cdot$ (Secs. $1,3,3 \mathrm{~A}$ to 3C, 5C, App. A, nos. 4, 6, 7; Figs. 3.1, 3,2)
geosynchronous orbit an orbit that is synchronized with the Earth's rotation. A sfátlite that is 35900 kilometers ab e the Equator (42400 kilometers from the Earth's center) and that is mitwing eastward has a 24 -hour orbit and remains oxer the same place on Earth. (Sec. 5A, App.. A, no. 10) it
gravimeter an instrument for measuring g by: the extension of a spring (Secs. 3A, 3B, App. A, nos. 5, 7; Fig. 3.2)
gravitation the fofteeof aturaction between two masses (m and M), given by Newton"s Law $F_{8}=G m M / r^{2}$; where r is the distance between them and G is a constant. (Secs. 2A, 3, 5; App. A, nos. 6, 7).
gravity the downward force ona mass near the Earth. (Secs. 3 to 3B)
gravity anomaly a region where gravity is lower or higher than expected if the Earth's crust is considened to have uniform density. (Secs; $/, 2 \mathrm{~A}, 3$, 3B, $4 ; 5,5 \mathrm{~B}, 5 \mathrm{C}$)
reenwich mean time (GMT) the time of an event, from 0 at midnight to 12 hours at noek to 24 hours at midnight, as measured at 0° longitude (Greenwich, near London, England) GMF is used on space missions to avoid confusion with other time zones. Seé Pamphlet I.
groundtrack the path followed by a spacecraft over the Earth's surface: (Fig. 5.2)
hertz (Hz) a unit of frequency, one oscillation (cycle) per second: f millit hertz $=10^{-3}$ cycles $/$ sec, 1 kilohertz $=1000$ cycles $/ \mathrm{sec}, 1$ megahertz $\pm 10^{\circ}$ cyclesisec. $\left[\right.$ gigahertz $=10^{9}$ cycles $/ \mathrm{sec}$.
high-low a'technique for measuring gravity anomalies, using one high;orbit satellite and one low-orbit satellite and measuring radio Doppler shifis between them. (Secs. 1, 5, 5A to 5C)
Ion an atom with one or more electrons removed or, more rarely, added. The electrons along the path of a radio wave change its frequency. Ionization is the fraction of atoms ionized. (Secs. 4, 5A, 5C; Figs. 4:2,5.1)
low-low a technique for measuring gravity anomalies, using two satellites in low orbit and measuring tadio Doppler shifts between them. (Secs." 1,4) MA-089 the Doppler 个racking. Experiment on the Apollo-Soyuz mission, (Secs. 1, 4; Fig. 4.3)
MA-128 the Geodynamics Experiment: (Secs. 1, SB, 5C)
mascon mass concentration; a region of high density below the Moon's surface. (Secs. 2A; 3. 3B, SB; Fig. 2.3)
orbit the path followed by a satellite around an astronomical body such as the' Earth or Moon. (Secs.' F; 2A, 3B, 4. 5A to 5C; Figs. 4.2, 5.3) The orbit number or "revolution" was used on Apollo-Soyuz to identify the time. (Sec: 5B; Figs. 4.3; 5.2)

oscillator an electronic device producing radio waves of a piven frequency: Crystal oscillators give a highly accurate frequency : (Secs. 2A, 5B; App:A; no. 8)
pendulum a mass suspended froma fiked.point so thatit can swinh back and forth freely (Sec; $3 A ; \mathrm{App} \mathrm{A}, \mathrm{po}, 4 \mathrm{Fig}: 3 \mathrm{~S})$
period (T) the time taken by a satellite 'to travelonce anound its orbit, of the timie between two succẹssive swings of a pendulum or between two suc ${ }^{p}$ cessive wave crests in radio or light waves. (Secs. 2, 3A; App. A, nos. 4, 10; Fig. 2.1)
r the distance of a satellite from the Earth's center.
कर
radio waves electromagnetic waves of wavelength betweent f firillimeter and several thousand kilometers'and frequencies between 300 gigaheitz and a few hertz. The higher frequencies are used for spacecraft communications, the lower for Navy communications. (Secs. $2,2 A^{\prime}, 4,5 A$ to $5 C_{i}$ App. A, no. 9)
reaction-enntrol jets'simall propulsion units on a spacecraft used to rotate it or to accelefate it in a specific direction. (Sec. 4)
refraction the beinding of électromagnetic rays such as light or radio waves where the material they are passing through changes in density of other properties. (Sec SC)
revolution the revolution or orbit number of a spacecraft in orbitanoybd the Earth. (gec. 5B. Figs 4.3, 5.2)
Service Module (SNE) the large part of the Apollo spacecraft that contains support equipment hit is attached to the Command Module (CM) until just before the CM reentets: the Earth's atmosphere.
sound waves pressute oscillations in the air. The speed of sound is $320 \mathrm{~m} / \mathrm{sec}$, (Sec. 2;App.A. $\mathrm{no}_{2} 1 \mathrm{Fig} 2.1$)
vector a directed quientity, such as velocity; force, or acceeleration Vector sy mbols (v,, , $;$) are given in boldface type.
wavelength (λ) the distance from the crest of one wave to the crest of the next, usually measured in angstroms for x-rays and visible ligh and ine centimeters or meters for radio wâves-see Appendix B. (Sec 2)

[^0]: * Reproductions supplied by EDRS are the best that can be made * from the original document.
 **

